Past Year JEE Questions

Quantiana
Questions

Quetion: 01

Statement - 1: The number of ways of distributing 10 identical balls in 4 distinct boxes such that no box is emply is ${}^{9}C_{3}$.

Statement - 2: The number of ways of choosing any 3 places from 9 different places is ${}^{9}C_{3}$. A. Statement - 1 is true, Statement - 2 is true, Statement - 2 is not a correct explanation for Statement - 1.

B. Statement - 1 is true, Statement - 2 is false.

C. Statement - 1 is false, Statement - 2 is true.

D. Statement - 1 is true, Statement - 2 is true, Statement - 2 is a correct explanation for Statement - 1.

Solutions

Solution: 01

Explanation

Let XA, X_B, X_C and X_D represent number of balls present in box A, B, C and D respectively. As no box can be empty so, X_A \geq 1, X_B \geq 1, X_C \geq 1 and X_D \geq 1 \Rightarrow X_A - 1 \geq 0, \Rightarrow X_B - 1 \geq 0, \Rightarrow X_C - 1 \geq 0 and \Rightarrow X_D - 1 \geq 0 t_A \geq 0, t_B \geq 0, t_C \geq 0 and t_D \geq 0 According to the question, X_A + X_B + X_C + X_D = 10 \Rightarrow (X_A - 1) + (X_B - 1) + (X_C - 1) + (X_D - 1) = 6 \Rightarrow t_A + t_B + t_C + t_D = 6 Now question becomes, box A, B, C, and D can have none or one or more balls and total balls are 6 From formula we know, n things can be distributed among r people in ^{n+r-}c_{r-1}ways where each people can have either 0 or more things.

:. 6 balls can be distributed among 4 boxes in ${}^{6+4-1}C_{4-1} = {}^{9}C_3$ ways where each box can have either 0 or more balls.

Therefore, Statement 1 is correct. The number of ways of choosing any 3 places from 9 different places is ${}^{9}C_{3}$ ways. But Statement - 2 is not the correct explanation of Statement - 1.